آموزش روش تاپسیس topsis

آموزش روش تاپسیس (TOPSIS)

تکنیک تاپسیس (TOPSIS)

روش تاپسیس یکی از روشهای تصمیم گیری چند شاخصه (MADM) است که به رتبه بندی گزینه ها می پردازد. در این روش از دو مفهوم “حل ایده آل” و “شباهت به حل ایده آل” استفاده شده است. به منظور اندازه گیری شباهت یک طرح (یا گزینه) به حل ایده آل و ضد ایده آل، فاصله آن طرح از حل ایده آل و ضد ایده آل اندازه گیری می شود. سپس گزینه بر اساس نسبت فاصله از حل ضد ایده آل به مجموع فاصله از حل ایده آل و ضد ایده آل ارزیابی و رتبه بندی می شود. واژه TOPSIS از حروف اول عبارت Technique for Order of Preference by Similarity to Ideal Solution گرفته شده است.

نکته مهم: مواردی که در بیشتر موضوعات پروپوزال و پایان نامه ها مشاهده می شود این است که به عنوان مثال برای رتبه بندی عوامل و شاخص های پژوهش روش تاپسیس را انتخاب نموده اند، در صورتیکه این اشتباه است و روش تاپسیس فقط برای رتبه بندی گزینه های مساله مورد استفاده قرار میگیرد نه عوامل پژوهش. به عنوان مثال فرض کنید موضوع پژوهشی در مورد مدیریت زنجیره تامین سبز است و میخواهیم با تکنیک تاپسیس این مساله را حل کنیم. این مساله تعدادی معیار که بر مدیریت زنجیره تامین سبز تاثیرگذار هستند انتخاب نموده است. حال این معیارها را فقط با روشهایی نظیر آنتروپی، AHP، ANP و یا BWM قادر به وزن دهی و رتبه بندی هستیم در صورتیکه بخواهیم از روش تاپسیس استفاده کنیم باید برای مساله تعداد گزینه (آلترناتیو) تایین کنیم به عنوان مثال آلترناتیو ها می تواند تعداد شرکت باشد، تعدادی استراتژی باشند که هدف تاپسیس رتبه بندی این موارد می باشد نه رتبه بندی شاخص ها.

مزایای روش تاپسیس

  • تصمیم گیری در صورت وجود معیارهای مثبت و منفی (حتی توام با هم در یک مساله) امکان پذیر است.
  • برای تعیین بهترین گزینه می توان تعداد قابل توجهی معیار را مورد بررسی قرار داد در حالی که در روش AHP یا روش ANP عملا و ذاتا در این زمینه محدودیت هایی وجود دارد.
  • این روش ساده و دارای سرعت مناسب است و برای تعداد زیادی گزینه و معیار به خوبی پاسخگو است.
  • در روش تاپسیس به راحتی می توان معیارهای کیفی را کمی کرد و تصمیم گیری با وجود معیارهای کیفی و کمی میسر است.
  • خروجی سیستم به صورت کمی است و علاوه بر تعیین گزینه برتر، رتبه سایر گزینه ها به صورت عددی بیان می شود. این مقدار عددی همان نزدیکی نسبی است که پایه قوی این روش را بیان می کند.

مراحل روش تاپسیس

1- تشکیل ماتریس تصمیم: گام اولیه این روش تشکیل ماتریس تصمیم است. ماتریس تصمیم این روش شامل یکسری معیار و گزینه می باشد یک ماتریسی که معیارها در ستون ها قرار می گیرند و گزینه ها در سطر هستند. و هر سلول ماتریس ارزیابی هر گزینه نسبت به هر معیار است. بعد از ایمکه ماتریس تصمیم تشکیل شد می بایست آن را توسط نظرات خبرگان تکمیل کنیم که این فرایند توسط طیف لیکرت یا ساعتی و یا اعداد واقعی صورت می گیرد در مواقعی که معیار کمی است مثل هزینه یا نرخ تولید و یا غیره که عدد واقعی آن را داریم برای هر گزینه آن عدد واقعی را قرار می دهیم اما در مواردی که معیار کیفی است و عدد کمی برای آن مفهومی ندارد از طیف 1 تا 9 استفاده می کنیم.

آموزش روش تاپسیس (TOPSIS)

2- بی مقیاس کردن ماتریس تصمیم (نرمال سازی ماتریس تصمیم): بی مقیاس کردن در روش تاپسیس به اینصورت انجام می شود که هر درایه بر جذر مجموع مربعات درایه های آن ستون معیار تقسیم می شود.

آموزش روش تاپسیس (TOPSIS)

3- تعیین ماتریس بی مقیاس وزن دار: در این گام باید وزن معیارها که از روشهای دیگر بدست آمده است را در ماتریس نرمال ضرب کنیم تا ماتریس وزن دار حاصل شود (روش تاپسیس به تنهایی قادر به محاسبه وزن معیارها نیست بنابراین باید از روشهای دیگر نظیر AHP ، آنتروپی و … وزن معیارها را محاسبه کرد و به عنوان ورودی به این روش داد).

4- یافتن حل ایده ال و ضد ایده آل: در این جا باید نوع معیارها مشخص شود معیارها یا جنبه مثبت دارند یا منفی. معیارهای مثبت معیارهایی هستند که افزایش آن ها باعث بهبود در سیستم شود مثل کیفیت یک محصول این معیار از نوع مثبت است و حل ایده آل آن برابر با بزرگترین درایه ستون معیار و ضد ایده آل برابر با کوچکترین درایه سلول. برای معیارهای منفی بالعکس.

  • برای معیارهایی که بار مثبت دارند ایده‌آل مثبت بزرگترین مقدار آن معیار است.
  • برای معیارهایی که بار مثبت دارند ایده‌آل منفی کوچکترین مقدار آن معیار است.
  • برای معیارهایی که بار منفی دارند ایده‌آل مثبت کوچکترین مقدار آن معیار است.
  • برای معیارهایی که بار منفی دارند ایده‌آل منفی بزرگترین مقدار آن معیار است.

5- محاسبه فاصله از حل ایده ال و ضد ایده آل: در این گام بر اساس رابطه زیر فاصله هر گزینه را ایده ال مثبت و منفی اش محاسبه می کنیم.

آموزش روش تاپسیس (TOPSIS)

محاسبه شاخص شباهت و رتبه بندی گزینه ها: شاخص شباهت نشان دهنده امتیاز هر گزینه است و بر اساس رابطه زیر محاسبه می شود هرچقدر این شاخص به عدد یک نزدیکتر باشد نشان از برتری آن گزینه می دهد.

آموزش روش تاپسیس (TOPSIS)

مثال روش تاپسیس

در این مثال هدف انتخاب بهترین گزینه سفر از بین 5 وسیله با توجه به 4 معیار می باشد و با استفاده از روش تاپسیس این مساله حل شده است. ابتدا مدل مساله را رسم می کنیم که در شکل زیر آورده شده است. همانطور که در مدل دیده می شود 4 معیار هزینه، ایمنی، مدت زمان سفر و راحتی و آسایش انتخاب شده است و 5 وسیله نقلیه به عنوان گزینه موجود هستند.

آموزش روش تاپسیس (TOPSIS)

الف- تشکیل ماتریس تصمیم

در این گام ماتریس تصمیم معیارها و گزینه ها را تشکیل می دهیم. همچنین در این گام باید معیارها مثبت و منفی را نیز مشخص کنیم. معیارها مثبت جنبه سود دارند یعنی هر چه بیشتر شوند بهتر است و معیارهای منفی جنبه هزینه دارند و هر چه کمتر باشند بهتر است. که با توجه به معیارهای پژوهش، هزینه و زمان سفر معیارهای منفی و ایمنی و راحتی معیارهای مثبت هستند.

منفیمثبتمنفیمثبت
0.4040.380.0970.119
هزینهایمنیزمان سفرراحتی
اتوبوس1000متوسط24کم
قطار معمولی2000واسطه متوسط و زیاد20متوسط
سواری1500واسطه متوسط و زیاد16زیاد
قطار سریع السیر3000زیاد11زیاد
هواپیما4000زیاد3زیاد

 

معیارهای ایمنی و راحتی معیارهای کیفی می باشند که باید توسط طیف زیر به کمی تبدیل شوند.

تبدیل کیفی به کمی987654321
خیلی زیادزیادمتوسطکمخیلی کم

 

ارزشهای 2، 4، 6 و 8 ارزشهای واسطه بین دو ارزش هستند.

منفیمثبتمنفیمثبت
0.4040.380.0970.119
هزینهایمنیزمان سفرراحتی
اتوبوس10005243
قطار معمولی20006205
سواری15006167
قطار سریع السیر30007117
هواپیما4000737

ب: بی مقیاس سازی (نرمال سازی) ماتریس تصمیم

در این گام از رابطه بی مقیاس سازی که قبلا اشاره شد استفاده می شود ماتریس بی مقیاس شده در جدول زیر آورده شده است.

 

منفیمثبتمنفیمثبت
0.4040.380.0970.119
هزینهایمنیزمان سفرراحتی
اتوبوس0.17610.35810.65030.2230
قطار معمولی0.35220.42970.54190.3716
سواری0.26410.42970.43350.5203
قطار سریع السیر0.52830.50130.29810.5203
هواپیما0.70440.50130.08130.5203

ج- تعیین بردار وزن وتعیین ماتریس بی مقیاس وزن دار

در این مرحله وزن معیارها را در ماتریس نرمال ضرب می کنیم. وزن معیارها می تواند از روشهای مختلفی که در بالا اشاره شد بدست آید.

منفیمثبتمنفیمثبت
هزینهایمنیزمان سفرراحتی
اتوبوس0.07110.13610.06310.0265
قطار معمولی0.14230.16330.05260.0442
سواری0.10670.16330.04210.0619
قطار سریع السیر0.21340.19050.02890.0619
هواپیما0.28460.19050.00790.0619

د- یافتن حل ایده آل و ضد ایده آل

در این گام برای هر شاخص یک ایده‌آل مثبت (S+) و یک ایده‌آل منفی (S-) محاسبه می‌شود.

  • برای معیارهایی که بار مثبت دارند ایده‌آل مثبت بزرگترین مقدار آن معیار است.
  • برای معیارهایی که بار مثبت دارند ایده‌آل منفی کوچکترین مقدار آن معیار است.
  • برای معیارهایی که بار منفی دارند ایده‌آل مثبت کوچکترین مقدار آن معیار است.
  • برای معیارهایی که بار منفی دارند ایده‌آل منفی بزرگترین مقدار آن معیار است.

 

هزینهایمنیزمان سفرراحتی
حل ایده آل (+S)0.07110.19050.00790.0619
حل ضد ایده آل (-S)0.28460.16330.05260.0442

ه- محاسبه فاصله از حل ایده آل و ضد ایده آل

در این گام میزان نزدیکی نسبی هر گزینه به راه‌حل ایده‌آل حساب می شود. فاصله اقلیدسی هر گزینه از ایده‌آل مثبت و منفی با فرمول زیر محاسبه خواهد شد. گام نهائی محاسبه راه‌حل ایده‌آل است. در این گام میزان نزدیکی نسبی هر گزینه به راه‌حل ایده‌آل حساب می‌شود. برای اینکار از فرمولهای زیر استفاده میکنیم:

فاصله گزینه ها از حل ایده آلd1+0.0852فاصله گزینه ها از حل ضد ایده آلd1-0.2161
d2+0.0901d2-0.1423
d3+0.0563d3-0.1790
d4+0.1438d4-0.0817
d5+0.2134d5-0.0552

و- محاسبه شاخص شباهت

شاخص شباهت (CL) از طریق فرمول زیر بدست می آید. مقدار شاخص شباهت  بین صفر و یک است. هرچه این مقدار به یک نزدیکتر باشد راه‌کار به جواب ایده‌آل نزدیکتر است و راه‌کار بهتری می‌باشد.

رتبهگزینه
رتبه نهایی گزینه هاc10.7172اتوبوس
c20.6123قطار معمولی
c30.7611سواری
c40.3624قطار سریع السیر
c50.2065هواپیما

با توجه به نتایج روش تاپسیس وسیله نقلیه سواری رتبه اول را کسب کرده است.


در ویدیوی زیر آموزش کامل روش تاپسیس و پیاده سازی در اکسل توضیح داده شده است.

جهت دانلود آموزش کامل این روش اینجا را کلیک کنید


چنانچه نیازمند مشاوره رایگان و انجام پروژه خود با این روش هستید با ما تماس بگیرید

آموزش روش تاپسیس (TOPSIS)

 

  • آموزش روش تاپسیس topsis
  • مثال روش تاپسیس
  • مزایای روش تاپسیس
4٫9

درباره ی مدیر سایت

کارشناسی مهندسی صنایع/کارشناسی ارشد مهندسی صنایع-صنایع/مسلط به مباحث تصمیم گیری چند شاخصه (MADM) در محیط های قطعی و فازی و خاکستری/ مسلط به نرم افزار های Super Decision - Expert Choice - Visual Promethee

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

یازده − یک =

انجام تخصصی پروژه، پایان نامه و مقاله تصمیم گیری چند معیاره-- کمترین هزینه بالاترین کیفیت ==> تماس یا تلگرام 09338859181تماس باما
+